It cant do 30% of tasks vorrectly. It can do tasks correctly as much as 30% of the time, and since it’s llm shit you know those numbers have been more massaged than any human in history has ever been.
yes, that’s generally useless. It should not be shoved down people’s throats. 30% accuracy still has its uses, especially if the result can be programmatically verified.
I have actually been doing this lately: iteratively prompting AI to write software and fix its errors until something useful comes out. It’s a lot like machine translation. I speak fluent C++, but I don’t speak Rust, but I can hammer away on the AI (with English language prompts) until it produces passable Rust for something I could write for myself in C++ in half the time and effort.
I also don’t speak Finnish, but Google Translate can take what I say in English and put it into at least somewhat comprehensible Finnish without egregious translation errors most of the time.
Is this useful? When C++ is getting banned for “security concerns” and Rust is the required language, it’s at least a little helpful.
The problem is they are not i.i.d., so this doesn’t really work. It works a bit, which is in my opinion why chain-of-thought is effective (it gives the LLM a chance to posit a couple answers first). However, we’re already looking at “agents,” so they’re probably already doing chain-of-thought.
It cant do 30% of tasks vorrectly. It can do tasks correctly as much as 30% of the time, and since it’s llm shit you know those numbers have been more massaged than any human in history has ever been.
I meant the latter, not “it can do 30% of tasks correctly 100% of the time.”
You get how that’s fucking useless, generally?
yes, that’s generally useless. It should not be shoved down people’s throats. 30% accuracy still has its uses, especially if the result can be programmatically verified.
Run something with a 70% failure rate 10x and you get to a cumulative 98% pass rate. LLMs don’t get tired and they can be run in parallel.
I have actually been doing this lately: iteratively prompting AI to write software and fix its errors until something useful comes out. It’s a lot like machine translation. I speak fluent C++, but I don’t speak Rust, but I can hammer away on the AI (with English language prompts) until it produces passable Rust for something I could write for myself in C++ in half the time and effort.
I also don’t speak Finnish, but Google Translate can take what I say in English and put it into at least somewhat comprehensible Finnish without egregious translation errors most of the time.
Is this useful? When C++ is getting banned for “security concerns” and Rust is the required language, it’s at least a little helpful.
I’m impressed you can make strides with Rust with AI. I am in a similar boat, except I’ve found LLMs are terrible with Rust.
The problem is they are not i.i.d., so this doesn’t really work. It works a bit, which is in my opinion why chain-of-thought is effective (it gives the LLM a chance to posit a couple answers first). However, we’re already looking at “agents,” so they’re probably already doing chain-of-thought.
Very fair comment. In my experience even increasing the temperature you get stuck in local minimums
I was just trying to illustrate how 70% failure rates can still be useful.
What’s 0.7^10?
About 0.02
So the chances of it being right ten times in a row are 2%.
No the chances of being wrong 10x in a row are 2%. So the chances of being right at least once are 98%.